「カーボンニュートラル行動計画」のフォローアップ調査結果

1. 当会の「カーボンニュートラル行動計画」の2030年度目標

「日本ゴム工業会の地球温暖化対策長期ビジョン」¹⁾で掲げる 2050 年カーボンニュートラルの実現を目指していくためのマイルストーンとして、2030 年度目標を設定する。最大限の省エネルギー化に加え、再生可能エネルギー由来の電力や脱炭素エネルギーの積極的な利用を進めることで、達成を目指すこととする。なお、算定には火力原単位方式を用いる ²⁾。(目標)

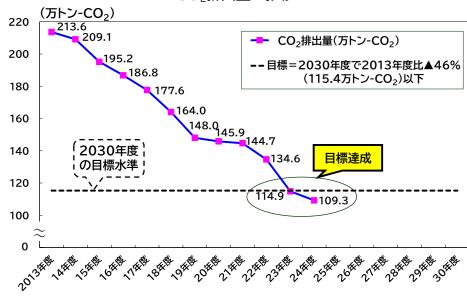
● 2030 年度のCO₂排出量を 2013 年度に対して 46%削減する。

1)パリ協定や日本のカーボンニュートラル宣言を踏まえて、2022 年 1 月策定。 2)2030 年度時点でも火力発電がマージナル電源であることが前提。

2. 2024 年度の結果

(はじめに)

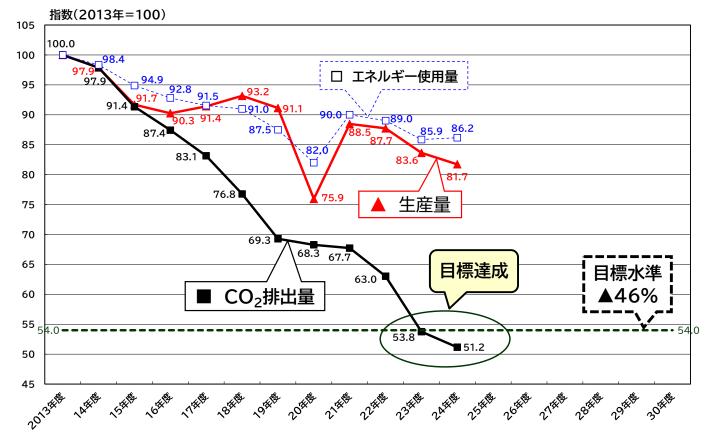
- ○経団連のカーボンニュートラル行動計画に参画し、国内生産活動による削減(2030 年度の目標を設定) に、主体間連携、国際貢献、革新的技術を加えた4本柱の取組としている。
- ○電力係数は、再生可能エネルギー電力導入の取組を反映させるため、フェーズ II (2030 年度目標)より 各社が使用している電力会社による各年度の係数(各社係数)を採用している。


(1)国内生産活動による削減(2024年度実績)

- ・2024 年度は、生産量が 113.4 万トン(前年度比 97.7%)と 3 年度連続のマイナス、基準年度比では 81.7%と 5 年度連続の 2 桁減となったこと、また、継続した燃料のエネルギー転換とともに、昨年度 に大幅な導入が進んだ電力の再生可能エネルギーが今年度も着実な伸びを示したことから、目標指標 のCO₂ 排出量は 109.3 万t-CO₂(前年度比 95.2%、基準年度比 51.2%) となり、昨年度に続いて 目標達成となった。
- ・カーボンニュートラルの実現に向けて、再生可能エネルギーの導入が拡大した結果、買電(Scope2)の 再生可能エネルギー比率は、当年度で 40.1%まで高まった。また、自家発電の再生可能エネルギーも 小規模ではあるが、前年度比で約1.5倍となった。
- ・今後はCO2の増加要因(生産量の増加、再工ネ価格の高騰等)を考慮し、目標水準を維持しつつ、引き続き 生産活動(Scope1)からの排出削減に取り組んでいくこととしている。
- ・具体的には、更なる省エネルギー化やエネルギー転換等の対策(IoT を活用したエネルギー管理、再生可能・ 脱炭素エネルギーの利用、排熱のエネルギー利用等)により、排出削減努力を継続していく。

(調査実績)

	生産量 (新ゴム量千	CO ₂ 排出量 (万t-CO ₂)
2013年度	1,387.2	213.6
2014年度	1,358.0	209.1
2015年度	1,271.8	195.2
2016年度	1,252.1	186.8
2017年度	1,268.2	177.6
2018年度	1,292.3	164.0
2019年度	1,264.3	148.0
2020年度	1,053.5	145.9
2021年度	1,227.2	144.7
2022年度	1,217.0	134.6
2023年度	1,160.2	114.9
2024年度	1,133.7	109.3
2025年度		
2026年度		
2027年度		
2028年度		
2029年度		
2030年度		
2024年度 (2013年度比)	▲18.3%	▲48.8%


CO₂排出量の推移

- 注)① 当会のフォローアップ参加企業 26 社の実績による(2024 年度における 26 社の新ゴム消費量は、日本全国の新ゴム消費量の 87%を占めると推定。
 - ② 2024 年度末において、同 26 社中 10 社で 34 基のコジェネレーション システムが稼働している。近年では、高効率・大型設備への集約が進んでいる。
 - ③ 算定に用いる経団連提示の発熱量係数、炭素排出係数が2023年度実績分に 遡って改訂されたため、前年度(2023年度)のCO2排出量を見直している。

(参考)

2013 年度(基準年度)を 100 としたCO2排出量の指数の推移

(2)主体間連携の強化

- ・民生部門での製品使用時の削減(低燃費タイヤ・省エネ部品等の開発、普及)をはじめ、LCAの観点から、 サプライチェーン全体(調達・生産・使用・廃棄)で低炭素化に向けた取組を推進した(再生可能資源の 開発、タイヤラベリング制度による低燃費タイヤの普及拡大、リトレッドタイヤ等の再生技術の活用、リサ イクル原材料の利用拡大、タイヤ材料技術<省資源化・環境負荷低減・各種性能向上等>の開発、タイヤ のデジタル・ソリューション技術<遠隔モニタリングによるタイヤ空気圧の適正管理>による燃費改善・ CO2排出削減)。
- ・業務部門での省エネ(オフィス等の空調・照明・その他設備関係等)を推進した。
- ・運輸部門での物流の効率化(モーダルシフト・積載率向上・エコカー使用等)を進めた。

(3)国際貢献の推進

- ・生産時の省エネ技術(コジェネレーションシステム、高効率生産設備、生産ノウハウ等)の海外移転を推進、 再生可能エネルギー導入拡大(再エネ 100%達成の拠点あり)等の取組。
- ・省エネ製品(低燃費タイヤ、省エネベルト、遮熱効果製品等)の海外生産・拡販により、現地での削減に貢献 する取組を進めるとともに、削減貢献量の定量化を実績ベースで実施。
- ・海外拠点において、タイヤ製品のリトレッド事業により、エネルギー消費削減に貢献した。
- ・海外拠点において、車両の運行管理サービスを展開し、輸送運航の効率化により、燃費向上やCO2削減に 貢献した。

(4)革新的技術の開発

- ・タイヤ製品: 低燃費タイヤ・ランフラットタイヤ・タイヤ空力性能等における更なる技術の向上、再生可能 資源使用タイヤ・エアレスタイヤ・省資源化や環境負荷低減、運動性能と耐久性等の両立、軽量化、相反 する材料特性(転がり抵抗低減とウエットグリップ性能)を両立させるゴム材料の構造 < ダブルネット ワーク > 、二酸化炭素を原料としたブタジエン(合成ゴム原料)の製造、使用済タイヤの熱分解による ケミカルリサイクルなど、様々な次世代材料の開発等
- ・工業用品:コンベアベルトの長寿命化、再生資源技術の開発、次世代自動車用部品の開発
- ・水素活用の技術:高温高圧蒸気の燃料転換技術として、実証段階(NEDO 支援)であり、P2G システム (グリーン水素製造)稼働開始。

以上